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Problem Formulation

2

Given a control affine nonlinear dynamical system:

Dynamical System

𝑥̇𝑥 𝑡𝑡 = 𝑓𝑓 𝑥𝑥 𝑡𝑡 + 𝑔𝑔 𝑥𝑥 𝑡𝑡 𝑢𝑢 𝑡𝑡

Design a controller, 𝑢𝑢 𝑡𝑡 , which minimizes a cost function:

Control Objective (Regulation Case)

𝐽𝐽 𝑥𝑥,𝑢𝑢 = �
0

∞
𝑥𝑥 𝜏𝜏 𝑇𝑇𝑄𝑄𝑥𝑥 𝜏𝜏 + 𝑢𝑢 𝜏𝜏 𝑇𝑇𝑅𝑅𝑅𝑅 𝜏𝜏 𝑑𝑑𝜏𝜏

Optimal value function:

Cost-to-Go

𝑉𝑉∗ 𝑥𝑥 = min
𝑢𝑢 𝜏𝜏 𝜖𝜖𝜖𝜖
𝜏𝜏𝜏𝜏ℝ≥𝑡𝑡

�
𝑡𝑡

∞
𝑥𝑥 𝜏𝜏 𝑇𝑇𝑄𝑄𝑄𝑄 𝜏𝜏 + 𝑢𝑢 𝜏𝜏 𝑇𝑇𝑅𝑅𝑅𝑅 𝜏𝜏 𝑑𝑑𝑑𝑑



HJB Equation
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Hamilton Jacobi Bellman Equation
Hamilton Jacobi Bellman (HJB) equation:

0 = 𝛻𝛻𝑥𝑥𝑉𝑉∗ 𝑥𝑥 𝑓𝑓 𝑥𝑥 + 𝑔𝑔 𝑥𝑥 𝑢𝑢∗ 𝑥𝑥 + 𝑥𝑥𝑇𝑇𝑄𝑄𝑄𝑄 + 𝑢𝑢∗ 𝑥𝑥 𝑇𝑇𝑅𝑅𝑢𝑢∗ 𝑥𝑥

• Cannot solve HJB analytically

• Approximate the Value Function 𝑉𝑉∗

• Stone Weierstrass Theorem 
• Neural Networks 

Optimal Controller
From Solving the HJB equation:

𝑢𝑢∗ 𝑥𝑥 = −
1
2𝑅𝑅

−1𝑔𝑔 𝑥𝑥 𝑇𝑇 𝛻𝛻𝑥𝑥𝑉𝑉∗ 𝑥𝑥 𝑇𝑇



Approximate Optimal Solution
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Optimal Value Function and Optimal Control Policy:

Unknown: Neural weights
�𝑊𝑊𝑎𝑎: Actor weight
�𝑊𝑊𝑐𝑐: Critic weight 

𝑉𝑉∗ 𝑥𝑥 = 𝑊𝑊𝑇𝑇𝜎𝜎 𝑥𝑥 + 𝜀𝜀 𝑥𝑥 𝑢𝑢∗ 𝑥𝑥 = −1
2
𝑅𝑅−1𝑔𝑔 𝑥𝑥 𝑇𝑇 𝛻𝛻𝑥𝑥𝜎𝜎 𝑥𝑥 𝑇𝑇𝑊𝑊 + 𝛻𝛻𝑥𝑥𝜀𝜀 𝑥𝑥 𝑇𝑇

Value Function and Optimal Control Policy Approximation

�𝑉𝑉 𝑥𝑥, �𝑊𝑊𝑐𝑐 = �𝑊𝑊𝑐𝑐
𝑇𝑇𝜎𝜎 𝑥𝑥 �𝑢𝑢 𝑥𝑥, �𝑊𝑊𝑎𝑎 = −1

2
𝑅𝑅−1𝑔𝑔 𝑥𝑥 𝑇𝑇 𝛻𝛻𝑥𝑥𝜎𝜎 𝑥𝑥 𝑇𝑇 �𝑊𝑊𝑎𝑎

Bellman Error (BE): Residual from HJB 

𝛿̂𝛿 𝑥𝑥, �𝑊𝑊𝑐𝑐 , �𝑊𝑊𝑎𝑎 ≜ 𝛻𝛻𝑥𝑥 �𝑉𝑉 𝑥𝑥, �𝑊𝑊𝑐𝑐 𝑓𝑓 𝑥𝑥 + 𝑔𝑔 𝑥𝑥 �𝑢𝑢 𝑥𝑥, �𝑊𝑊𝑎𝑎 + �𝑢𝑢 𝑥𝑥, �𝑊𝑊𝑎𝑎
𝑇𝑇𝑅𝑅�𝑢𝑢 𝑥𝑥, �𝑊𝑊𝑎𝑎 + 𝑥𝑥𝑇𝑇𝑄𝑄𝑄𝑄



Weight Update Laws using R-MBRL

On-Trajectory 
Point

BE Extrapolation
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Instantaneous BE: Residual from Optimality 

𝛿̂𝛿𝑖𝑖 𝑒𝑒, 𝑡𝑡 ≜ 𝛿̂𝛿 𝑒𝑒𝑖𝑖 , �𝑊𝑊𝑐𝑐 𝑡𝑡 , �𝑊𝑊𝑎𝑎 𝑡𝑡

Γ̇ 𝑡𝑡 = 𝜆𝜆Γ 𝑡𝑡 −
𝜂𝜂𝑐𝑐𝑐Γ 𝑡𝑡 𝜔𝜔 𝑡𝑡 𝜔𝜔 𝑡𝑡 𝑇𝑇Γ 𝑡𝑡

𝜌𝜌 𝑡𝑡 − Γ 𝑡𝑡 𝜂𝜂𝑐𝑐𝑐
1
𝑁𝑁𝑗𝑗
�

𝑖𝑖=1

𝑁𝑁𝑗𝑗 𝜔𝜔𝑖𝑖 𝑡𝑡 𝜔𝜔𝑖𝑖𝑇𝑇 𝑡𝑡
𝜌𝜌𝑖𝑖 𝑡𝑡

𝛿̂𝛿𝑖𝑖 𝑡𝑡 Γ 𝑡𝑡 𝟏𝟏 Γ≤ Γ ≤Γ

�̇𝑊𝑊𝑎𝑎 𝑡𝑡 = −𝜂𝜂𝑐𝑐𝑐 �𝑊𝑊𝑎𝑎 𝑡𝑡 − �𝑊𝑊𝑐𝑐 𝑡𝑡 − 𝜂𝜂𝑎𝑎𝑎 �𝑊𝑊𝑎𝑎 𝑡𝑡 +
𝜂𝜂𝑐𝑐𝑐𝐺𝐺𝜎𝜎𝑇𝑇 𝑡𝑡 �𝑊𝑊𝑎𝑎 𝑡𝑡 𝜔𝜔 𝑡𝑡 𝑇𝑇

4𝜌𝜌 𝑡𝑡
�𝑊𝑊𝑐𝑐 𝑡𝑡

+
𝜂𝜂𝑐𝑐𝑐
4𝑁𝑁𝑗𝑗

�
𝑖𝑖=1

𝑁𝑁𝑗𝑗 𝐺𝐺𝑖𝑖𝜎𝜎𝑇𝑇 �𝑊𝑊𝑎𝑎 𝑡𝑡 𝜔𝜔𝑖𝑖 𝑡𝑡
𝜌𝜌𝑖𝑖 𝑡𝑡

𝛿̂𝛿𝑖𝑖 𝑡𝑡 �𝑊𝑊𝑐𝑐 𝑡𝑡

�̇𝑊𝑊𝑐𝑐 𝑡𝑡 = −𝜂𝜂𝑐𝑐𝑐Γ
𝜔𝜔 𝑡𝑡
𝜌𝜌 𝑡𝑡 𝛿̂𝛿 + 𝜂𝜂𝑐𝑐𝑐

1
𝑁𝑁𝑗𝑗
�

𝑖𝑖=1

𝑁𝑁𝑗𝑗 𝜔𝜔𝑖𝑖 𝑡𝑡
𝜌𝜌𝑖𝑖 𝑡𝑡

𝛿̂𝛿𝑖𝑖 𝑡𝑡
Off-Trajectory Points

Sparse Terms



Segmentation

• Separate operating domain
• Bellman error extrapolation 

contained to segment
• Smaller history stack
• Switches depending on region
• Introduces discontinuities



Segmentation






Simulation Results

• Linear Quadratic Tracking (LQT)

𝑥̇𝑥 =
−𝑥𝑥1 + 𝑥𝑥2

−
1
2
𝑥𝑥1 −

1
2
𝑥𝑥2

+ 0
1 𝑢𝑢

𝑥𝑥𝑑𝑑 = 4 sin 𝑡𝑡
4 cos 𝑡𝑡 + 4sin 𝑡𝑡

• Analytical solution known
• Non-sparse basis outside of box
• 𝜎𝜎 𝜁𝜁 = 𝑒𝑒12, 𝑒𝑒1𝑒𝑒2, 𝑒𝑒1𝑥𝑥𝑑𝑑𝑑, 𝑒𝑒1𝑥𝑥𝑑𝑑𝑑, 𝑒𝑒22, 𝑒𝑒2𝑥𝑥𝑑𝑑𝑑, 𝑒𝑒2𝑥𝑥𝑑𝑑𝑑 𝑇𝑇

• Sparse basis inside of box
• 𝜎𝜎 𝜁𝜁 = 𝑒𝑒12, 𝑒𝑒1𝑒𝑒2, 0,0, 𝑒𝑒22, 𝑒𝑒2𝑥𝑥𝑑𝑑𝑑, 𝑒𝑒2𝑥𝑥𝑑𝑑𝑑 𝑇𝑇

• Dynamics approximated with neural 
network






Simulation Results

NN System ID Weights Control Policy Critic/Actor Weights



Simulation Results
• Standard Model-Based ADP • SS Model-Based ADP

Controller Std. Model-Based ADP SS Model-Based ADP

Median Computation Time (10 trials) (s) 120.40 25.90

Integral of Error (∫0
150 𝑒𝑒 𝜏𝜏 𝑑𝑑𝜏𝜏) (rad∙s) 33.72 27.97

5% Rise Time (s) 33.33 44.29

RMS Steady State Error (s) 6.92� 10−3 5.57� 10−3
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Controller Std. Model-Based ADP SS Model-Based ADP

Median Computation Time (10 trials) (s) 120.40 25.90

Integral of Error (∫0
150 𝑒𝑒 𝜏𝜏 𝑑𝑑𝜏𝜏) (rad∙s) 33.72 27.97

5% Rise Time (s) 33.33 44.29

RMS Steady State Error (s) 6.92� 10−3 5.57� 10−3

78.4% decrease









Simulation Results

SS Model-Based ADPStandard Model-Based ADP
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Stability Analysis

• Theorem 1: Subsystem Stability Analysis
• 𝑉𝑉𝐿𝐿,𝑖𝑖 𝑟𝑟𝑖𝑖 , 𝑡𝑡 = 𝑉𝑉𝑖𝑖∗ 𝑥𝑥 + 1

2
�𝑊𝑊𝑐𝑐,𝑖𝑖

𝑇𝑇Γ𝑖𝑖−1 �𝑊𝑊𝑐𝑐,𝑖𝑖 + 1
2
�𝑊𝑊𝑎𝑎,𝑖𝑖

𝑇𝑇 �𝑊𝑊𝑎𝑎,𝑖𝑖

• 𝑉̇𝑉𝐿𝐿,𝑖𝑖 𝑟𝑟𝑖𝑖 , 𝑡𝑡 ≤ Λ𝑖𝑖
𝛼𝛼2,𝑖𝑖

𝑉𝑉𝐿𝐿,𝑖𝑖 𝑟𝑟𝑖𝑖 , 𝑡𝑡 + 𝑙𝑙𝑖𝑖

• System state 𝑥𝑥 , weight estimation errors �𝑊𝑊𝑐𝑐 , �𝑊𝑊𝑎𝑎 ,
and control policy 𝑢𝑢 𝑡𝑡 is Uniformly Ultimately 
Bounded

• Exponential convergence to a region 𝑉𝑉𝐿𝐿,𝑖𝑖 𝑟𝑟𝑖𝑖 , 𝑡𝑡 ≤
2𝑙𝑙𝑖𝑖𝛼𝛼2,𝑖𝑖

3

Λ𝑖𝑖𝛼𝛼1,𝑖𝑖
2 .

13



Theorem 2

• When switching from 𝑖𝑖 = 1 → 2, there is a jump 
between the multiple Lyapunov functions.

14

𝑉𝑉𝐿𝐿,1 𝑟𝑟1, 𝑡𝑡 = 𝑉𝑉1∗ 𝑥𝑥 +
1
2
�𝑊𝑊𝑐𝑐,1

𝑇𝑇Γ1−1 �𝑊𝑊𝑐𝑐,1 +
1
2
�𝑊𝑊𝑎𝑎,1

𝑇𝑇 �𝑊𝑊𝑎𝑎,1

𝑉𝑉𝐿𝐿,2 𝑟𝑟2, 𝑡𝑡 = 𝑉𝑉2∗ 𝑥𝑥 +
1
2
�𝑊𝑊𝑐𝑐,2

𝑇𝑇Γ2−1 �𝑊𝑊𝑐𝑐,2 +
1
2
�𝑊𝑊𝑎𝑎,2

𝑇𝑇 �𝑊𝑊𝑎𝑎,2

Scales by const. due to 
quadratic value fcn. 

assumption

Switching causes 
discrete jumps in these 
values



Theorem 2

Theorem 2:

The system consisting of a family of subsystems, each with control affine
dynamics and a properly designed dwell-time, τ, ensures that x, �Wc,i and
�Wa,i ∀i will converge to a neighborhood of the origin in the sense that
VL,i ri, t ≤ VL,B for all t ≥ T; where VL,B ∈ ℝ is the maximum ultimate bound
for all subsystems, and T ∈ ℝ is the time required to reach the ultimate
bound VL,B; provided a minimum dwell-time τ∗ is satisfied.



Dynamic Model

Mode 1, Unaltered Model

Mode 2, Altered Model

Mode 3, Altered Model

Switched System ADP16

• F-16 longitudinal dynamics 
• [Stevens, Lewis, Johnson, 2016]

Explore further connection with Ben Dickenson 
(AFRL/RW), regarding reconfigurable aircraft 
munition that extend wings, retract wings



Switched System ADP17

• Switch between multiple 
dynamical systems

• Arbitrary switching sequence
• Satisfies minimum dwell-time 

condition

• Switching Sequence
• {1,2,3,1,3,2}



Switched System ADP

Switched ADP

18



Lyapunov-Based 
Real-Time and Iterative

Adjustment of 
Deep Neural Networks

Under Review, IEEE Control Systems Letters

R. Sun, M. L. Greene, D. M. Le, Z. I. Bell, G. Chowdhary, W. E. Dixon

1Univ. of Florida, 1AFRL/RW, 2Univ. of Illinois Urbana-Champagne



DNN-Based Adaptive Control20

DNN



DNN-Based Adaptive Control21

• Van der Pol Oscillator
• Trained with 600s of 

simulation data
• Transient response is 

fast relative to the 
overall timescale



DNN-Based Adaptive Control22

Trained on identical dynamics



DNN-Based Adaptive Control23

Trained on similar dynamics (different coefficients) - transfer learning



DNN-Based Adaptive Control24

No offline training. Inner-layer DNN weights are randomly initialized.
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